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Abstract 
The mechanical design of the robot arm was illustrated with a CAD drawing and the 
control goal was stated. A feedback control system for the arm configuration is presented 
and specifications were given for the design with the servo parameters. Next, the transfer 
functions of the feedback systems, the process and the controller were modelled. The 
closed-loop system was a fourth-order system and not a second-order system. So, the 
controller parameters (ܽ,ܾ, ܿ and ܭ஽) were selected such that two poles are dominant and 
located appropriately to meet the design specifications/second-order results. The 
remaining poles of our fourth-order system were located such that their contribution to 
the overall response was negligible. The appropriate locations for the dominant poles of 
the closed loop system were determined using second-order system approximation 
formulae. The step response was plotted and the system was tested using the Nyquist 
criterion. The results showed that the system was stable and within the specifications. 
 
Keywords:  Link, Revolute Joint, End-Effecter, Servo, Degree Of Freedom, Model, 
Feedback, Loop, Controller, Gain. 
 
1. Introduction 
To understand and control complex systems, one must obtain quantitative mathematical 
models of these systems. It is necessary therefore to analyze the relationships between the 
system variables and to obtain a mathematical model.  
 
The performance of a feedback system can be described in terms of the location of the 
roots of the characteristic equation in the s-plane. A graph showing how the roots of the 
characteristic equation move around the s-plane as a single parameter varies is known as 
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a root locus plot. The root locus is a powerful tool for designing and analyzing feedback 
control systems. This is important because we know that the response of a closed-loop 
feedback system can be adjusted to achieve the desired performance by judicious 
selection of one or more controller parameters. The PID controller is a popular controller 
structure widely used in industrial process. 
 
The stability of a feedback system is directly related to the location of the roots of the 
characteristic equation of the system transfer function. The relative stability and the 
transient performance of a closed-loop control system are directly related to the location 
of the closed-loop roots of the characteristic equation in the s-plane. It is frequently 
necessary to adjust one or more system parameters in order to obtain suitable root 
locations. Frequency response methods such as the Nyquist stability criterion can be used 
to investigate stability. 
 
Robot arm modelling and control have received much attention from researchers in the 
past decades and in recent times. Hossein and Hassan (2014) modeled, simulated and 
controlled a 3-DOF (deg articulated robot. The model is linearized with feedback and a 
PID controller is implemented to track a reference trajectory. Farhan (2014) presented a 
robot arm model based on Simulink. Mathematical, Simulink models and MATLAB 
program were developed to return maximum numerical visual and graphical data to 
select, design, control and analyze arm system. In (Okubanjo et al, 2017), the control 
algorithm is expanded on the derived mathematical equations to control the robot arm in 
joint angle position. In another paper, “Modeling of 2-DOF Robot Arm and Control”, the 
control algorithm is expanded on the derived mathematical equations to control the robot 
arm in joint angle position. The Proportional Integral Derivative (PID) controllers were 
implemented in the model and the simulation model was developed with the aid of 
MATLAB and Simulink simulation tool to investigate the system performance in joint 
space. According to the results analysis, the robot arm was satisfactorily controlled to 
reach and stay within a desired joint angle position (Okubanjo et al, 2017).In another 
thesis, “Theory of Robotic Arm Control with PLC” the control system consists of the 
programmable logic controller (PLC), a motor controller, a voltage regulator, a control 
pendent and a bride board circuit. The arm works both manually and automatically using 
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potentiometers and PLC respectively. The complex programming is possible in the PLC 
for the automatic mode of operation. It is found that a robotic arm with a simple 
mechanism can be manipulated in a complex way by using a PLC. (Safdar, 2015). 
 
This paper is presented for educational purpose to help beginners glean a wide 
background of robot arm control. 
 
2.0 Material and Methods 
2.1 Design Presentation of the Robot Arm 
The robot armis athree revolute joint (RRR) planar armconfiguration which allowsthree 
independent movements (3 dof). The links are actuated by field-controlled DC servos. 

 
Fig 1: The 3 DOF RRR Planar Robot Arm 

 
2.2 Control Goal 
The end-effecter’s final position depends on the synchronous movements of all the joints 
of the arm. The aim is to place the tip of the tip of the end-effecter at the commanded 
position with minimal overshoot by controlling the rotation of each joint through required 
path lengths till its corresponding link is properly configuredis properly configured in the 
presence of disturbances.  
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Fig. 2 Control System for the Robot Arm 
 
Each loop represents a joint and the immediate link it carries We shall focus our attention 
on each loop. 
 
2.3 Design Specifications 
Closed-loop bandwidth greater than 1Hz. 
A settling time to within 2% of the final value of less than 2 seconds. 
Percent overshoot less than 15 percent to a step input. 
Input voltage,ܴ(ݏ) =  ݒ4.8
 
Angular velocity of the field controlled DC servo at each jointfor 4.8ݒsupply,߸(ݏ) =
ߠ݀

ൗݐ݀ = 63.65ᵒ ⁄ݏ  

Field time constant ߬௙ = 0.02sec 
Mechanical time constant ߬௅ = 2sec 
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For feedback, a potentiometer is used as the position sensor with ±2.4v between two end 
terminals and measure the voltage of the brush relative to the ground. Since one 
revolution gives a voltage change of 4.8v, the sensor gain is 4.8v per revolution. 
 
2.4 Modelling    
2.4.1 System Transfer Functions, ࢀ(࢙) 
The system output is          

(ݏ)ܻ =
(ݏ)ଵܩ(ݏ)௖ଵܩ

1 + (ݏ)ଵܮ (ݏ)ܴ +
(ݏ)ଶܩ(ݏ)௖ଶܩ

1 + (ݏ)ଶܮ
(ݏ)ܴ +

(ݏ)ଷܩ(ݏ)௖ଷܩ
1 + (ݏ)ଷܮ

 (ݏ)ܴ

(1) 
The transfer function of the three-link arm is thus 

ଷܶ(ݏ) =
(ݏ)ଵܩ(ݏ)௖ଵܩ

1 + (ݏ)ଵܮ +
(ݏ)ଶܩ(ݏ)௖ଶܩ

1 + (ݏ)ଶܮ
+
(ݏ)ଷܩ(ݏ)௖ଷܩ

1 + (ݏ)ଷܮ
 

(2) 
The same controller is used in every loop and the same dynamic process occurs in every 
loop, so we put 

(࢙)૜ࢀ = ૜
(࢙)ࡳ(࢙)ࢉࡳ
૚ + (࢙)ࡸ

 

 (3) 
and with unitary feedback in all loops, the loop gain for every loop is thus 

(࢙)ࡸ = (ݏ)ܪ(ݏ)ܩ(ݏ)௖ܩ =  (࢙)ࡳ(࢙)ࢉࡳ
(4) 

Thus  

(࢙)૜ࢀ = ૜
(࢙)ࡸ

૚ + (࢙)ࡸ
 

(5) 
and the closed loop transfer function of every loop (each joint/link of the robot arm) is  

(࢙)૚ࢀ =
(࢙)ࡸ

૚ + (࢙)ࡸ
 

(6) 
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2.4.2 Process Transfer Function of the Actuator/Link (Field Controlled DC Servo), 
 (࢙)ࡳ
The transfer function of a D.C. Servomotor is given as 

(ݏ)ఏܩ =
ܾ/௠ܭ ௙ܴ

ݏ൫߬௙ݏ + 1൯(߬௅ݏ + 1)
=

ܭ
ݏ௙߬)ݏ + 1)(߬௅ݏ + 1)

 

(7) 
We need to determine the gain ܭ  butܭ௠ , ܾ and ௙ܴ  are not included in the motor 
specifications but we have that ߸(ݏ) = 63.65ᵒ ⁄ݏ  andܴ(ݏ) =  Thus, we can use the .ݒ4.8
transfer function, (ݏ)ܩ  from the field voltage ௙ܸ  to the shaft angular velocity ߸ and 
compare withܩఏ(ݏ)in eq.(7)to deduce ܭ. 

(ݏ)ܩ =
(ݏ)߸

௙ܸ(ݏ)
 

(8) 

To convert ܩఏ(ݏ)to (ݏ)ܩ the Laplace integral operator 1 ൗݏ  in ܩఏ(ݏ) is differentiated out. 

Now comparing, 

(ݏ)ܩ =
(ݏ)߸

௙ܸ(ݏ) =
ܭ

(߬௙ݏ + 1)(߬௅ݏ + 1)
 

(9) 
Putting ߸ = 63.65ᵒ ݏ ≡⁄ ݀ܽݎ 1.111 ⁄ݏ and ௙ܸ =  we haveݒ4.8

0.23 =
ܭ

(߬௙ݏ + 1)(߬௅ݏ + 1)
 

 
Using final value theorem of the Laplace transform,  

0.23 = lim
௦⟶଴

ܭ
(߬௙ݏ + 1)(߬௅ݏ + 1)

 

ܭ = 0.23 
With ܭ = 0.23,߬௙ = 0.02sec and ߬௅ = 2sec, (ݏ)ܩcan now be written using eq. (9) as 

(࢙)ࡳ =
૙. ૛૜

૙. ૙૝࢙૜ + ૛. ૙૛࢙૛ + ࢙
 

(10) 
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2.4.3 Transfer Function of the Controller, ࢉࡳ(࢙) 
Let the controller be of the form 

(࢙)ࢉࡳ =
૛࢙ࡰࡷ + ࢙ࡼࡷ + ࡵࡷ

࢙ + ࢉ
 

(11) 
 

As ܿ → 0 , a proportional-integral-derivative (PID) controller is obtained where  ܭ஽ , 
 .ூ are the controller gainsܭ ௉andܭ
Puttingܭ௉ = ூܭ ஽ܽandܭ =  ஽asܭ can be written in terms of (ݏ)௖ܩ ,஽ܾܭ

(ݏ)௖ܩ =
ଶݏ)஽ܭ + ݏܽ + ܾ)

s + c
 

(12) 
 

This controller introduces a transfer function with two zeros anywhere on the s-plane (see 
the quadratic numerator) and one pole at the origin. The key tuning parameters ܽ,ܾ and 
 .஽should satisfy design specificationsܭ
 
Using this controller, the loop gain is 

(ݏ)ܮ = (ݏ)௖ܩ(ݏ)ܩ =
ଶݏ஽ܭ)0.23 + ݏ஽ܽܭ + (஽ܾܭ

ସݏ0.04 + (2.02 + ଷݏ(0.04ܿ + (2.02ܿ + ଶݏ(1 + ݏܿ
 

(13) 
and the closed loop transfer function of every loop is  

ଵܶ(ݏ)

=
ଶݏ஽ܭ)0.23 + ݏ஽ܽܭ + (஽ܾܭ

ସݏ0.04 + (2.02 + ଷݏ(0.04ܿ + (2.02ܿ + 1 + ଶݏ(஽ܭ0.23 + (ܿ + ݏ(஽ܽܭ0.23 + ஽ܾܭ0.23
 

          (14) 

 
Our closed-loop system is a fourth-order system and not a second-order system. So, a 
valid design approach would be to select the controller parameters (ܽ,ܾ and ܭ஽) such that 
two desired dominant poles are located appropriately to meet the design specifications 
and second-order results. The remaining poles of our fourth-order system are located 
such that their contribution to the overall response is negligible. 
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The closed-loop transfer function has the characteristic equation: 
ସݏ + (50.5 + ଷݏ(ܿ + (50.5ܿ + 25 + ଶݏ(஽ܭ5.75 + (25ܿ + ݏ(஽ܽܭ5.75 + ஽ܾܭ5.75 = 0 

                       (15) 
 

Let the desired characteristic equation, be composed of multiple factors as 
ଶݏ) + ݏ௡߱ߞ2 + ߱௡ଶ)(ݏଶ + ݀ଵݏ + ݀଴) = 0   (16) 

 
such that the roots of ݏଶ + ݏ௡߱ߞ2 + ߱௡ଶ = 0are the dominant roots (where ߞ and ߱௡ are 
selected to meet the design specifications) while the roots of ݏଶ + ݀ଵݏ + ݀଴ = 0are the 
non-dominant roots.  
 
For ݏଶ + ݏ௡߱ߞ2 + ߱௡ଶ = 0 ,the dominant roots should lie on a vertical line in the 
complex plane defined by the distance ݏ = ௡߱ߞ−  away from the imaginary axis. 
Consideringݏଶ + ݀ଵݏ + ݀଴ = 0 ,if we let ݀ଵ = ௡߱ߞߙ2 , the non-dominant roots when 
complex, lie on a vertical line in the complex plane defined by ݏ =  the ,1˃ߙ ௡. If߱ߞߙ−
roots effectively move to the left (the larger ߙis, the further the non-dominant roots lie). 
Since we would like the contribution of the non-dominant roots to the overall response to 
be quickly fading and non-oscillatory, let ݀଴ =  .ଶ߱௡ଶso as to obtain two real rootsߞଶߙ
Substituting ݀ଵ = ௡ and ݀଴߱ߞߙ2 =  ,ଶ߱௡ଶeq.(16)ߞଶߙ
 

ଶݏ) + ݏ௡߱ߞ2 + ߱௡ଶ)(ݏଶ + ݏ௡߱ߞߙ2 + (ଶ߱௡ଶߞଶߙ = 0 
ସݏ + ߙ)௡߱ߞ2] + ଷݏ[(1 + {߱௡ଶ[ߞߙଶ(ߙ + 4) + ଶݏ{[1 + ଶߞߙ)௡ଷ߱ߞߙ2] + ݏ[(1 + ଶ߱௡ସߞଶߙ

= 0 
         (17) 

Using second-order system approximation formulae we can obtain ߞ , ߱௡  and other 
parameters like resonance frequency߱௥, peak magnitudeܯ௣ఠand settling time ௦ܶ. 
 
The minimum damping ratio ߞ for 15% overshoot can be obtained using  

ܲ. ܱ. = 100݁ି఍గ ඥଵି఍మ⁄                  (18) 

ߞ = 0.5169 
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Natural frequency, 

߱௡ =
߱஻

ߞ1.1961− + 1.8506
 

      (19) 

߱௡ = 5.0960 rad/s 

 
(where bandwidth, ߱஻from our design specification = 1Hz = 6.28 rad/s 

Resonance frequency, 

߱௥ = ߱௡ඥ1 −  ଶ    (20)ߞ2

                           = 3.4774 rad/s 
Peak magnitude, 

௣ఠܯ = ଵ
ଶ఍ඥଵି఍మ

     (21) 

= 1.1300 

Settling time (for 2% criterion),  

௦ܶ = 4߬ =
4
௡߱ߞ

 

 (22) 

= 1.52 sec 
 
Now substituting ߞ = 0.5169 , ߱௡ = 5.0960 rad/s and ߙ = 100 , in eq. (17) and 
comparing with eq. (15), we have that: 
From coefficients of   ݏଷ: ܿ = 481.5927 

஽ܭ :ଶݏ = 8320.3452 
ܽ :ݏ = 7.6749 

     (constant terms)   : ܾ = 37.6636 
 
The proportional and the integral gains are, of course: 

௉ܭ = ஽ܽܭ = 63,857.8174 
ூܭ = ஽ܾܭ = 31,3374.1535 

 

Now the controller, in the formܩ௖(ݏ) = ௄ವ௦మା௄ು௦ା௄಺
௦ା௖

is 
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(࢙)ࢉࡳ =
ૡ૜૛૙. ૜૝૞૛࢙૛ + ૟૜ૡ૞ૠ. ૡ૚ૠ૝࢙ + ૜૚૜૜ૠ૝. ૚૞૜૞

࢙ + ૝ૡ૚. ૞ૢ૛ૠ
 

          (23) 
 

Now putting our controller parameters in eq.s (13) and (14),  

(࢙)ࡸ =
૚ૢ૚૜. ૟ૠૢ૝࢙૛ + ૚૝૟ૡૠ. ૛ૢૡ૙࢙ + ૠ૛, ૙ૠ૟. ૙૞૞૜

૙. ૙૝࢙૝ + ૛૚. ૛ૡ૜ૠ࢙૜ + ૢૠ૜. ૡ૚ૠ૜࢙૛ + ૝ૡ૚. ૞ૢ૛ૠ࢙
 

          (24) 
 

(࢙)૚ࢀ =
૚ૢ૚૜. ૟ૠૢ૝࢙૛ + ૚૝૟ૡૠ. ૛ૢૡ૙࢙ + ૠ૛૙ૠ૟. ૙૞૞૜

૙. ૙૝࢙૝ + ૛૚. ૛ૡ૜ૠ࢙૜ + ૛ૡૡૠ. ૝ૢ૟ૠ࢙૛ + ૚૞૚૟ૡ. ૡૢ૙ૠ࢙ + ૠ૛૙ૠ૟. ૙૞૞૜
 

          (25) 
 

and of course, the closed loop transfer function of the arm is 

(࢙)૜ࢀ =
૞, ૠ૝૚. ૙૜ૡ૛࢙૛ + ૝૝, ૙૟૚. ૡૢ૝࢙ + ૛૚૟, ૛૛ૡ. ૚૟૞ૢ

૙. ૙૝࢙૝ + ૛૚. ૛ૡ૜ૠ࢙૜ + ૛ૡૡૠ. ૝ૢ૟ૠ࢙૛ + ૚૞૚૟ૡ. ૡૢ૙ૠ࢙ + ૠ૛૙ૠ૟. ૙૞૞૜
 

          (26) 
3.0 Results and Discussions 
3.1 System Response and Stability 
Using ଵܶ(ݏ), we can plot the step response and magnitude plots. 

 
Fig. 3 Step Response of Each Joint 
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Rise Time: 0.1452       Overshoot: 9.1130 
Settling Time: 0.8422    Undershoot: 0              
Settling Min: 0.9021        Peak: 1.0911          
Settling Max: 1.0911   Peak Time: 0.4747 

 
Fig. 4 Magnitude Plot of the Each Closed Loop System (Each Joint) 

 
In the step response (fig. 3) we see that the system exhibits approximately 9.11% 
maximum overshoot which satisfies the design specification of below 15% as planned. In 
fig. 4, the peak magnitude is 0.90 (we were expecting 1.13). 
 
3.2 Stability Test 
No. of polesof (ݏ)ܮ in the right hands-plane see eq. (24): 

ݏ = 0 
ݏ = −0.5 − (2.8 × 10ିଵଷ)݅   

ݏ = −50 + (2.3 × 10ିଵଷ)݅ 
ݏ = −481.6 − (2.8 × 10ିଵସ)݅  
 

There are no poles to the right. Therefore, ܲ = 0 
 

No. of encirclements of the −1 + ݆0 point: 
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Fig. 5  Niquist Plot (Mapping for (ݏ)ܮ) 

 

 
Fig. 6 Niquist Plot (Mapping for (ݏ)ܮzoomed towards the origin) 

 
In fig. 5 the branches go off towards infinity. However, because there is a pole at the 
origin (on the j߱-axis) (see fig. 6), we can infer that the counterclockwise 180ᵒ detour 
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around the origin in ݏyields a clockwise 180ᵒ detour in (ݏ)ܮ.The −1 + ݆0 point is not 
encircled therefore ܰ = 0. 
No. of unstable zeros of (ݏ)ܨ: 

ܼ = ܰ + ܲ = 0  (27) 
 

As a check, let us find the locations of the zeros by putting 
(ݏ)ܨ = 1 + (ݏ)ܮ = 0    (28) 
 

(ݏ)ܨ =
ସݏ0.04 + ଷݏ21.2837 + ଶݏ2,887.4967 + ݏ15,168.8907 + 72,076.0553

ସݏ0.04 + ଷݏ21.2837 + ଶݏ973.8173 + ݏ481.5927
= 0 

           (29) 
 

The zeros areݏ = −2.63 ± 4.36݅andݏ = −263.41 ± 0.26݅. (There are no zeros on the 
right).Therefore, the number of unstable zeros of (ݏ)ܨ, ܼ = 0 
 
Inference: One of the conditions for stability according to Nyquist states that a feedback 
control system is stable if and only if the polar plot contour in the (ݏ)ܮplane does not 
encircle the (-1,0) point (ܰ = 0)when the number of poles of (ݏ)ܮin the righthands-plane 
is zero (ܲ = 0). Our feedback system is thus stable. 
 
4.0. Conclusion  
 
5.0 Recommendations 
The following areas should be considered in future research 
Nomenclature 
RRR – three revolute joints 
DOF – degree of freedom 
  the input voltage –(ݏ)௔ܧ ,(ݏ)ܴ
 output i.e. the desired position of the end-effecter’s tip –(ݏ)ܻ
 process transfer function of the actuator/link (field controlled DC servo)–(ݏ)ܩ
 transfer function of the controller–(ݏ)௖ܩ
  feedback transfer function –(ݏ)ܪ
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 loop gain –(ݏ)ܮ

௅ܶ(ݏ)–loop transfer function 
 ௠ – motor constantܭ
ܾ–equivalent coefficient of friction (of load and motor) 

௙ܴ– field winding resistance 
߬௙–time constant for field circuit 
߬௅ –mechanical time constant 
ܭ the gain – ܭ = ܾ/௠ܭ ௙ܴ 
ܼ–no. of unstable zeros of (ݏ)ܨ = 1 +   which are located on the right-hand s-plane(ݏ)ܮ
ܰ–no. of encirclements of the −1 + ݆0 point 
ܲ–no. of poles of (ݏ)ܮin the right hands-plane 
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